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Abstract: This paper presents an energy management strategy (EMS) based on the Stackelberg game
theory for the microgrid community. Three agents or layers are considered in the proposed frame-
work. The microgrid cluster (MGC) refers to the agent that coordinates the interactions between the
microgrids and the utility grid. The microgrid agent manages the energy scheduling of its own con-
sumers. The third agent represents the consumers inside the microgrids. The game equilibrium
point is solved between different layers and each layer will benefit the most. First, an algorithm
performs demand response in each microgrid according to load models in smart buildings and de-
termines the load consumption for each consumer. Then, each microgrid determines its selling price
to the consumers and the amount of energy required to purchase from the utility grid to achieve the
maximum profit. Finally, the balance point will be obtained between microgrids by the microgrid
cluster agent. Moreover, the proposed method uses various load types at different times based on
real-life models. The result shows that considering these different load models with demand re-
sponse increased the profit of the user agent by an average of 22%. The demand response is imple-
mented by the time of use (TOU) model and real-time pricing (RTP) in the microgrid.

Keywords: microgrid; energy management; Stackelberg game; demand response; smart building

1. Introduction

Demand-side energy management and the uncertainty of renewable energies such
as solar and wind are becoming increasingly important in smart power systems [1,2]. En-
ergy management systems (EMS) are required to realize the ability of a wide range of
applications in a microgrid. The EMS can coordinate the distributed energy resources
(DER) with their loads, while each DER has its own local controller [3]. The microgrids
use the power supply from the grid, RESs, and their local energy storage systems to meet
power demands. Moreover, microgrid clusters can make an intermediate coordination
layer between the microgrids and the utility grid [4]. Therefore, the operation of the mi-
crogrid cluster can be divided into three levels of agents: the microgrid cluster, the mi-
crogrid, and the user [5].

Several research works have focused on energy management in microgrids [6]. The
authors in [7] have proposed a hybrid two-stage energy management plan. The first stage
is based on the day-ahead energy generation schedule market. The second stage is an
intraday market that acts based on the hourly time resolution. However, the proposed
method is unsuitable for energy exchange in different microgrids. In [8], a two-stage en-
ergy management model has been proposed with a different approach. The power bal-
ance is realized in the upper layer between different microgrids. In the down-stream layer,
each microgrid has to provide a power balance between different consumptions.

Today, multiagent systems are used for the planning and scheduling of microgrids
and consumptions based on their contributions to providing smart grid technologies such
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as demand response. In [9], a scheduling method has been proposed to optimize mi-
crogrids without considering demand response. The authors in [10] have presented a hi-
erarchical optimization method based on energy scheduling and maximizing profits of
microgrids. Mixed integer programming and Stackelberg game theory were used to solve
the optimization problems. In [11], a Stackelberg game leader-follower method has been
developed for energy trading in multiple interconnected microgrids in a competitive mar-
ket, maximizing the payoff for all microgrids. In [12,13], a Stackelberg game between pro-
viders and end users in the microgrids has been proposed. The authors in [12,13] have
considered the real natural gas price of the generators to obtain the real profit. In [12], the
proposed model obtained an optimal solution by a distributed algorithm to maximize
profit of a large population regime. Ref. [13] presented the prosumer benefits of energy
trading in virtual microgrids by telecommunication systems. In [14], an energy manage-
ment method has been proposed to balance the energy and profit between the compo-
nents of a microgrid based on the Stackelberg game in different layers. In [15], a two-level
Stackelberg game has been developed to tackle the day-ahead scheduling optimization
challenges in the microgrids. It used an economic dispatch at the lower level to achieve an
interactive model. In [16], a coordinated energy management method has been proposed
for a hybrid distribution network (AC/DC) with a microgrid. It used a bi-level optimiza-
tion problem using noncooperative game theory and robust optimization. The consumer’s
role was not considered in the power transmission market. In [17], an energy management
model has been presented considering cooling, heating, and a micro energy grid based on
the game theory. It utilized a dynamic leader-follower game strategy to balance the inter-
action between the microgrid energy grid and the end user. The authors in [18] proposed
an optimal energy management model based on the Stackelberg game theory for a mi-
crogrid with inflexible and flexible loads in commercial smart buildings to maximize the
profit of the customers. In [5], an energy management optimization scheme has been pro-
posed based on the Stackelberg game in two levels. A unique Stackelberg equilibrium
point was obtained to achieve the maximum profit for each participant in this game. It
improved the economic benefits for each participant.

Demand-side management requires accurate prior knowledge of load patterns [19].
The literature on customer energy consumption have mainly concentrated on responsive
load models such as exponential, linear, and potential demand functions or demand elas-
ticity-based methods [20]. The loads can be arranged based on various costs depending
on the time of operation or tariff-based load variation [21]. In [22], a numerical experi-
ments method has been proposed with synthetic data using demand models, including
buildings, batteries, and aggregations of price-responsive loads. In [23], a metaheuristic
optimization method has been utilized for the optimal scheduling of shiftable loads within
a smart grid. Ref. [24] presented energy management based on stochastic information gap
decision theory (IGDT) formulation in isolated microgrids. It considered the uncertainty
model of renewables generation and demand. In [25], the authors focused on the chal-
lenges in the energy management of campus microgrids with the uncertain nature of re-
newable energy. They considered the costs, utilization, CBSs (control-based systems), en-
ergy trading, and campus microgrid of the energy systems. Ref. [26] presented an energy
management design to optimize and control operations in a hybrid microgrid with real-
time monitoring. The authors in [27] proposed the Internet of Things (IoT) model for home
energy management systems. The data of the energy management system were provided
by supervisory control, data acquisition and PMUs [28,29]. In [30], a multi-objective opti-
mization approach has been developed for home energy management by the internet
based on energy consumption cost and user satisfaction. Ref. [31] focused on energy man-
agement to decrease the peak of power consumption based on the air conditioning system.
It used thermal energy storage for the air conditioning. In [32], the authors proposed an
energy management with new functionalities based on programing and postponing the
activation of smart home appliances.
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According to the presented background, the main contributions of this paper can be
listed as follows:

¢ A new method based on the load model of buildings in a microgrid is presented. The
method is based on the Stackelberg game model between microgrids and consumers;

¢ A demand response approach is developed to increase the consumption during light
load conditions and reduce the amount of peak load regarding the amount of energy
consumption and the price of the network;

e  Energy management and exchange in each microgrid and between the microgrid
cluster agents are written as linear equations according to the principles of lineariza-
tion. This issue helps to reduce the calculations and results in the global equilibrium
point.

The paper is organized as follows. The theory of each agent model is explained in
detail in Section 2. The model of load and the model of game theory are described in Sec-
tions 3 and 4, respectively. The case study and simulation results are presented in Section
5, and finally, the paper is concluded in Section 6.

2. Model Description

In this study, the modeling of microgrids and microgrid clusters is based on a game
theory with one leader and several followers. The models can be scheduled independently
in parallel. The microgrid cluster is based on real-time prices that are determined by the
utility grid (UG). Microgrid cluster refers to the agent that coordinates the interactions
between microgrids and the utility or upstream network. The microgrid agent refers to
the coordinator of individual microgrids which facilitates the interactions with its down-
stream or domestic consumers.

2.1. Microgrid Cluster Agent Model

The microgrid cluster profit model is according to the price of buying and selling
energy to the upstream network. The cost of energy for each microgrid is expressed in
Equation (1):

24

N
Max Eygea = z [As,tPsit — AptPpic] + Z[ﬂs,tpgs,t — Up,tPgp ] (1)

i=1t=1 t=1

N
=

where i represents each microgrid, N is the number of microgrids, t is the symbol of day
and night hours, A is the price of purchasing and selling energy to microgrids, and y is
the price of buying and selling electricity to the utility grid. Some constraints must be
considered in the model. One of these constraints is the power balance in each microgrid,
which can be expressed as Equation (2):

N N
ZPs,i,t +l//tPgs,t :Zpb,i,t +(1_V/t )Pgb,t
i=1 i=1

. 2
P, <BigM *y, @
Py, <BigM *(1-y,)
where BigM is a large number used to linearize the multiplication of a binary number and

is a continuous variable. Purchase and sale price limits are considered as another con-
straint in this model, which is given in Equation (3):

Psi < Ape < Ase < Up 3)

The price of selling energy to the utility grid is set at the highest electricity price. In
contrast, the price of purchasing energy from the utility grid is set at the lowest price.
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2.2. Microgrid Agent Model

The microgrid agent model is described based on the price of prosumer’s energy con-
sumption, and the profit of each agent is optimized and maximized separately. The energy
balance is based on the maximum use of renewable energy. The profit model of the mi-
crogrid operator is given in Equation (4):

24
maxEMG,i = Z{ys,i,tli,t - [Ccoz,i,t + Ccom,i,t + Cent,i,t + Cex,i,t]} (4)

t=1

where vy and ] are the selling price of power to the consumer and the power consumption
of consumers, respectively. C,,, represents the cost of equipment maintenance and C,,
is the cost of power transmission from the grid. C.,, and C,,, are the cost of carbon di-
oxide pollution and other gas pollution such as nitrogen and sulfur, respectively. Each of
the costs are calculated by the optimization of the profit function. Equation (5) represents
the power balance between microgrids and consumers.

P +P,  + Py By 1 (B, +Pgb,i,t):

Pc,i,z +P1,i,z +(1 _fi,t)(Ps,i,t +Pgs,i,t) 5
Pb,i,t +Pgb,i,t < BigM *fi,t ©
Ps,i,t +Pgs,i,t <BlgM *(l_fi,t)

where P is the power generation of various units such as solar cells, wind turbines, and
batteries. F is a binary variable to determine the state of the system, which indicates
whether the microgrid is in buying or selling mode. Another constraint is applied by lim-
itation of the power generation of gas-fueled units, which is described in Equation (6):

P <P, ., <P

m,i t,min m,i t,max (6)

2.3. User or Consumer Agent Model

On the consumer’s side, the profit model is based on the ratio of consumption of
power to the demand purchased by consumers, which is described in Equation (7):

24 1+ai,t
1

24 Haie
;B lig\ @t
s-=§s-=§ —d; — (—) -1
w —~ whkt "1t |\di )

i=

—1<ai,t<0,ﬁi >0

where a and f are the profit function coefficients of consumers, which are determined
according to the network conditions. The cost for each consumer is obtained from Equa-
tion (8) according to the energy purchase price.

24 24
Cur = D Cui= Y (raie b ®)
i=1 i=1

The optimization function model of consumers is according to Equation (9):
maxEy,; = —Cyi — Sy, 9)

One of the most important issues is the demand response by consumers, which is
considered as a hard constraint in this study (Equation (10)):

24 24
Die-t) <€) die (10)
i=1 i=1
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3. Load Model

The main idea of this paper is to model different types of loads. For this reason, dif-
ferent loads are considered in the optimization of consumption to make the demand re-
sponse more realistic and suitable. This hypothesis makes the model more profitable for
the consumer compared to that in ref. [5], which considers the demand response as a fixed
coefficient of the demand amount.

Results bring more profit to the consumers and have a better effect in reducing the
peak load. The implementation of this response is highly dependent on the expansion of
the internet inside buildings and home appliances that can be connected to the internet.

The existence of the internet makes it possible to have control over the load models
and reduce or even stop their consumption at certain hours of the day and night. It is also
possible to transfer the interrupted loads to other hours of the day and night when energy
consumption is lower, such as the load of refrigerators. Figure 1 shows a conceptual view
of residential smart buildings and the types of loads in these buildings.

w4

>
»
w ; ‘
Seits Lighting % %“

Renewable Energies

i

Cooling ®

Heating

Lins Appliance

Figure 1. The overview of the building with internet-controlled loads.

The demand response can be implemented based on the price, the air temperature,
etc. Then, the power consumption can be generally considered according to Equation (11):

L, =DV, +4q (11)

where p and g are constants that are determined by the history of consumption based on
the different loads. These constants can be expressed in terms of the consumption culture
and air temperature conditions. There are various loads in the buildings in the microgrid.
For instance, a coefficient of price can be considered based on the demand for air condi-
tioning loads as given in (12):

lAircon,i,t =(K- K'x ys,i,t) X dAircon,i,t (12)

According to (13), different costs can be considered per hour for the lighting loads. If
the price is higher than its upper level, for example, then it is equal to k times the amount
of lighting demand, if it is between the lower and upper levels of the price, it will be equal
to k’ times the quantity demanded, and if the price is less than the lower level, it will not
react to the price. Therefore, it is possible to consider more load steps in order to achieve
more accuracy from lighting loads. This increases the calculation complexity.



Energies 2023, 16, 73 6 of 17

k XdLight gLt LP S }/s,i Jx < UP
lLight ot = k 'X dLight ot ]/s,i,t 2 UP (13)
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The working time of some loads, such as refrigerators, can be completely controlled
by the internet. Of course, the working time shift should not be more than the maximum
amount based on the price. According to (14), the total consumption should be equal to
the total demand consumption for a day and a night.

0 ys,i,t ZUP

[ = 24 24
Ref it l _ d
Z Ref it Z Ref it
t=1 t=1

Some loads are not responsive to price changes, and they do not change their con-
sumptions. The response value of the load that causes the profit of the consumer agent is
considered equal to the sum of the response values of different loads. If the amount of
responsiveness is assumed to be constant, the amount of consumer benefit will be lower.
Another constraint is the range of power consumption in the consumer section, which is
expressed in Equation (15):

(14)

li,t,min < li,t < li,t,max (15)

4. Game Model

In this study, a non-cooperative Stackelberg game is used to maximize the profit of
each agent. First, the leader gives a strategy in this type of game. Then, the follower, ac-
cording to the leader’s strategy, gives the optimal response and passes the strategy to the
leader. The optimal points of the game should be obtained for each agent, and the optimal
point of the system should be determined in successive repetitions of the game. The mi-
crogrid cluster determines the prices of buying and selling energy in this system. The mi-
crogrid agents balance power based on the prices and the optimal point and the price of
selling energy is determined by the consumers with the most profit. The consumer agent
will respond and determine the amount of consumption to obtain the most profit based
on this price. The buying and selling prices of the microgrid cluster, the selling price of
energy in microgrids, the power bought and sold in microgrids, and the consumption
power of consumers are determined after reaching the equilibrium point of the system.
The profit of all three agents is maximized by changing the strategy; the profit of each of
the factors will not increase at this point. Therefore, the method in the game includes two
steps:

(1) In the first layer, the microgrid cluster determines the purchase and sale prices of
energy for each microgrid. Then, the microgrids determine their buying and selling
power to get the most profit, and balance the power according to the prices.

(2) In the second layer, each microgrid determines the prosumer’s energy to consumers
based on the demand of consumers and consumption history. The consumers change
their consumption power by using demand response to achieve maximum profit ac-
cording to the prices.

In each of these stages, if the profit difference between each agent in one iteration and
the previous iteration is less than the desired threshold, the iteration will stop, and the
equilibrium point of the Stackelberg game between the agents will be obtained. Figure 2
displays the different layers of the network, the power transmission path between the
layers, and the game between these layers.
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Figure 2. Communication between different layers based on the power exchange and game theory
model.

5. Simulation Results

The simulation was performed by using General Algebraic Modeling Software
(GAMS) and MATLAB software. The purchase and sale prices of energy in the cluster
layer of microgrids and the energy sales prices of each of the microgrids to consumers
were determined in MATLAB software by using particle swarm optimization (PSO). The
prices were used as inputs to the optimization problem developed in GAMS software.
Figure 3 shows the real-time purchase and sale prices of energy from the upstream net-
work.

TOU Price

0.18
0.16
0.14
0.12

0.1
0.08
0.06

0.04
0.02
0

123 456 7 8 91011121314151617 18 19 2021 22 23 24

H Sell mBuy

Figure 3. Real-time prices of power buying and selling from the upstream network.

Figure 4 demonstrates the consumption of various loads in buildings at different
times in a 24 h period. Figure 5 displays the production power of renewable units within
24 h in each microgrid.
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Figure 4. Consumption of consumers in each microgrid.

=—4—MG1WT ——MG2PV =—&—MG3PV

250
200
150
2
4
100
50
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Figure 5. Production power of renewable generators in each microgrid.
Table 1 shows the specifications of production units in each microgrid.
Table 1. Specifications of production units in each microgrid.
MT MT MT MT ESS ESS ESS ESS ESS ESS ESS PV WT
I
Pmax Pmin Rup Rdown Pc Pd Emax Smax Smin Etac Etad Status Status
MG1 80 0 25 25 0 0 0 0 0 0 0 0 1
MG2 0 0 0 0 80 80 225 0.9 0.1 095 095 1 1
MG3 0 0 0 0 60 60 200 0.9 0.1 095  0.95 1 0

Two different models are considered for the game theory model in the simulation:

(@) The consumer agent is based on a fixed coefficient of the total load response;
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(b) The consumer agent can change its energy consumption based on the type of load,
the price of the load, and load response.

Figure 6 shows the output of energy purchase and sale price by the microgrid cluster
in MATLAB software.

0.18
0.16

12 3 45 6 7 8 91011121314151617 18 19 20 21 22 23 24

== | anda_sell MGCA  e=ge=Landa_buy MGCA

Figure 6. The basic price of buying and selling energy from the grid output by the PSO model in
model 1.

Figure 7 displays energy purchase and sale prices in each microgrid.

First, the game is considered at the lowest level (the level of the consumer agent) based on
the set prices of the microgrid contrary to ref. [1]. The amount of consumption should be
determined according to the responsiveness of the load and change in consumption. The
agent starts the game after determining the amount of consumption and announcing it to
the microgrid agent. Then, the amount of power is requested for buying and selling with
the microgrid cluster by the game and is announced to a higher level. The procedure of
the game is ten iterations, if the difference in the profit value of the microgrids in two
consecutive iterations is less than a certain threshold (0.1 in this program), the loop will
be stopped, and the results are announced.

0.35
0.3
0.25

0.2

S/kw

0.15

0.1

0.05

123 45 6 7 8 9 1011121314151617 18 19 2021 22 23 24

== Gamma MGl  ==ge==Gamma MG2 Gamma MG3
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Figure 7. The basic price of buying and selling energy from each microgrid by PSO.

5.1. Model 1

The results of the proposed model are presented assuming that the consumer agent
can only change its consumption with a fixed coefficient of demand. Figures 8-10 show
the variations in the amount of consumer load in the game using model 1. As can be seen
from the figures, the consumers reduce the load during the hours when the prices are high
from the target microgrid, and this also reduces the load at peak consumption so that they
can increase their profit by responding to the load.

MG1

—¢—Before —l— After

180
160
140
120
100
80
60
40
20

KW

12 3 45 6 7 8 9101112131415161718192021222324

Figure 8. Consumption variations in microgrid 1: model 1.

MG2

—¢—Before —fl— After

250
200

150

KW

100

50

12 3 45 6 7 8 9101112131415161718192021222324

Figure 9. Consumption variations in microgrid 2: model 1.
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Figure 10. Consumption variations in microgrid 3: model 1.

—¢— Before —ll— After

6 7 8 9 1011121314151617 1819 2021222324

The amount of power bought from and sold to the microgrid cluster, and the amount
of power produced by each microgrid is determined by the game in the microgrid layer
based on the prices set by the upstream network. The consumption power is obtained
from the consumer layer, while the microgrid cannot change this consumption. Each mi-
crogrid is trying to produce the maximum renewable energy to increase its profits due to
the high production costs of gas units. Figures 11-13 show the variation in the production
power of each microgrid and the power bought and sold with the microgrid cluster. These
figures show that each microgrid uses the maximum capacity of renewable generation to
increase its profit in the hours when it can use them. Additionally, during peak hours for
energy supply, consumers buy energy from the upstream network.

300
200
100

-100

-200
-300

mMT

MGCA_Purchase

1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24

MGCA _Sell mUGA_Purchase mUGA_Sell

Figure 11. Change in the production power of each unit and the power bought and sold in microgrid

1.
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Figure 12. Change in the production power of each unit and the power bought and sold in microgrid
2.

MG3

200
E 0
-100 |
T1lL
-200
-300

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24

EMT mPV mWT © Load m MGCA_Purchase m MGCA_Sell ®mUGA_Purchase mUGA_Sell

Figure 13. Change in the production power of each unit and the power bought and sold in microgrid
3.

Figure 14 shows the total power bought and sold from the microgrid cluster to the
microgrids and the upstream network.

500
400
300
200
100

0

= -100

-200
-300
-400
-500
-600

1 .2 3 4.5 6 7 8\9 101112 13141516 18 19 20 21 22 23 24

e \|GCA_Purchase  e====NMGCA _Sell  e====NMGA_Purchase === MGA_Sell

Figure 14. Total power bought and sold from microgrid cluster to each microgrid and upstream
network.
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5.2. Model 2

In this model, the consumer agent can respond appropriately according to the type
of load and the purchase price of electricity from the upstream network. Figure 15 displays
the change in energy purchases and sale prices to earn more profit by the game in the
microgrid operators with microgrids and the upstream network. The microgrid operator
raises the purchase price to encourage the microgrid to consume more energy at times
when the price of purchasing energy from the upstream grid is high (gray color curve).

0.18
e
0.16
0.14
0.12
0.1 A
0.08

0.06 EeTmTeE— =R

0.04
0.02

123 45 6 7 8 9 1011121314151617 18 19 2021 22 23 24

e=fi== VU sell e=g==Mu buy Landa sell Landa buy

Figure 15. Change in the prices of buying and selling energy inside microgrid with microgrid clus-
ters and an upstream network.

Figure 16 represents the changes in the energy sale price of each of the microgrids to
consumers in a 24 h period.

1.8
1.6
1.4
1.2

1
0.8
0.6
0.4

0.2

0
1 23 456 7 8 9101112 1314151617 18 19 20 21 22 23 24

e=fle= Gamma MGl  e=g==Gamma MG2 Gamma MG3

Figure 16. Change in the energy sale prices of each microgrid to consumers.

Figure 17 shows the variations in the power bought and sold from the microgrid
cluster with the microgrids and the upstream network. It shows that by allowing the price
change by the microgrid cluster, this agent can buy and sell more energy from the mi-
crogrid, in comparison with Figure 14.
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Figure 17. Variations in power bought and sold from the microgrid cluster to microgrids and the
upstream network.

One of the problems faced by the power transmission and distribution network is the
supply of peak load. Table 2 shows the peak load values in each microgrid, before and
after optimization. These numbers show that the demand response in model 2 has been
performed in such a way that the amount of peak load has decreased, and this achieve-
ment, in addition to the cross-sectional profit for each microgrid, also prevents more in-
vestment in providing peak load.

Table 2. Change in peak load in each microgrid before and after optimization.

Peak Load in Model 1 (kw) Peak Load in Model 2 (kw)

i Before DR After DR Before DR After DR
MG1 161 170 161 132
MG2 161 193 161 143
MG3 161 194 161 139

Figure 18 displays the overall result of the game (the objective function), which shows
the profit of each agent. The response of the load at different hours was better according
to the price. Moreover, the profit of the consumers increases due to it being allowed to
change the load based on the load types in model 2. The profit of the microgrid decreased,
which was predictable due to the increase in the profit of the consumer agent.
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Figure 18. The profit of each microgrid and the microgrid cluster.

6. Conclusions

This paper presented a Stackelberg game between the agents of the network, includ-
ing several microgrids that are connected by a microgrid cluster and exchange power with
the upstream network. The game process was based on two separate layers. One layer
modelled the interaction between each microgrid and microgrid cluster, and the equilib-
rium point between them. In the second layer, the game modelled the interactions be-
tween the microgrid agent and the consumer agent. In each of the layers, the follower
determines the power required to achieve increased profit based on the price of the leader
and announces the power to the leader. Then, the forward operator determines the bal-
ance point for buying and selling energy with the upstream grid. The responsiveness of
consumers was one of the most important parts of this game, which increased the profit
for each consumer and microgrid, and therefore decreased the profit of the microgrid clus-
ter. The proposed method considers different load models in a smart building regarding
a suitable demand response model compared to previous methods, which allows chang-
ing the load at different hours of the day and night. The flexible load response increased
the profit of the consumer agent more with respect to the model that only changes the
load by a constant factor. For future work, the load shifting between microgrids can be
investigated. This can be performed by interconnecting microgrids for greater stability.
Moreover, the increase in electric vehicles, the traffic of these vehicles, and their charging
and discharging in different microgrids can be considered.
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